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Abstract

Linear programming versions of some control problems on Markov
chains are derived, and are studied under conditions which occur in typi-
cal problems which arise by discretizing continuous time and state sys-
tems, of in discrete state systems. Control interpretations of the dual
variables and simplex multipliers are given, The formulation allows the
' treatment of 'state space' like constraints which cannot be handled con-
“veniently with dynamic programming., The relation between dynamic programming
on Markov chains, and the deterministic discrete maximum principle is
explored, and some insight is obtained into the problem of singular stc-

~chastic controls (with respect to a stochastic maximum principle).



1. Introduction

This paper is concerned with several problems occuring in”the con-
trol of a Markov chgin {Xh] on the state space (0,1,...,N) =8, with trans-
ition probabilities pij(a), where @, a control, takes values in a set U,.
State O is a desired target state and ;bo(a) = 1; once in state 0, al-
ways in state 0. The terms u = (ul,...,uN), u; € U;, denotes a control

vector. I.e.,, if the control vector wu is always used, and Xn = i, then

the value of o in pij(oc) is w(X)) = u,. Let 7 denote the first time
state 0 is attained, k(i,o) the cost paid when the state is i and con-
trol u(Xn) =u =0 is used, and Eg the expectation operator given that

Xb = i, and the control vector u is used. Then the cost is
a T-1
V(wi) = B, 2 k(X ,u(x)).
: i, n ol

Define k(0,a) = 0. Then

(1) V(usi)

Ef g k(X ,ulX ).

Define the colum vectors V(u)

(&1, ul‘): esey k(N, UN) ).

Note that, if the N step transition probability ‘pgg)(u) >0

(V(u3l),e00,V(u3N)) and K(u) =

for all i, then state O is attainable and V(u) exists.

Define problem (Pl): Iet Ui contain a finite number of points

(which, for convenience, we assume are «

l,.oa,aq), or let the n+l dimensional



set (Pil(Ui)’°°°’piN(Ui)’k(i’Ui)) be a convex polyhedroa with extreme points
included in {(Pil(ai)’°°"piN(Q}):k(i’O}))’ r = l,000,9}. Assume (Al):

pgg)(u) >0 for all i and u, or (A2): k(i,a) >0 for all i,z and

pgg)(u) >0 for all i and some u, Find the control u = (ul’°"’uN) which
minimizes V(uw3i), i = 1,...,N. Define v, = min V(usi).

The assumption on Ui can be weakened, although the form given
allows a relatively simple notation. Indeed any compact Ui is suitable
if the pij(-) and k() are continucus., The convex polyhedron assumption
is satisfied for problems which are obtained by discretizing continuous time
bang-bang problems, See the example,

In Section 2, a linear programming formulation of (P1) will be
given., ILinear programming (L.P.) versions of many types of dynamic program-
ming problems are well known (see, e.g., [3] - [5], [9]). Indeed, a L. P.
version of (Pl) was given by Derman [6]. The variables in the L.P. form
in [6] do not seem to have a simple physical interpretation. However, the
form here seems more natural and has a more natural dual, namely the dynamic
programming equations for (Pl)

N
v, S ji:lpij(ar)vvj + k(i,ar), all i,r.

While experience indicates that the linear programming algorithm
(Simplex method) is generally inferior, in computational efficiency, to the
available dynamic programming iterative methods (for the type of problems
discussed here), it is of interest since it is an alternative formulation which
sheds further light on the Markov optimization problem and, in addition, the

two important reasons:



(a) There may be additional constraints on the probabilities
P{Xn = i} (Section 2). The dynamic prograrming is not directly applicable,
and the L.P., formulation yields useful insights into the optimization prob-
lem., Indeed, it is often desirable or necessary to add such constraints
in Markov control problems. See Section 2 for example.

(b) The L.P. formulation gives us insight into a form of a sto-
chastic maximum principle (Section 5), and the singularity problem of the
stochastic maximum principle .

In Section 3, which treats a finite time Markov optimization prob-
lem, it is shown that the Holtzman form of the discrete maximum principle
[7] is eqguivalent to dynamic programming, in the absense of 'state space!
constraints on the variables P[Xh = i}, and that the control is often sin-
gular (in the sense that minimization of the relevant Hamiltonian yields
no information on the form of the control) in the presence of such con-
straints, a situation which often occurs with deterministic systems with

state space constraints,

2, ILinegr Programming and the Optimal Control Problem,

2,1, DNo 'state space' constraints, First a form of (PL) will be

treated, Let R(u) = {pij(ui), i,j = 1,...,N} denote the reduced transition
matrix (state O omitted) corresponding to control vector u = (ul,...,uN).

The following known results [2] will be used below,

Lemma 1. Assume (Al). Then state 0 1is attained w.p.l., and V(u) is the

unique vector solution to the vector equation

(2) ¢ = R(u)C + K(v).



If k(i,@) >0 and (2) has a finite solution, then p§g)(u)'> 0

and p]{_g)(u) -1 as n-w® and C=7V(u). Under (A2), there is at least

one such U,

Under (Al)”gﬁ (A2) there is an optimal control, and the least

cost vector V satisfies

(3) V = min[R(w)V + K(u)].
u

Remark, The property p?o(u) >0 for all i assures that state 0 is

ultimately attained with a corresponding finite average cost,

Lemma 2, (Howard's iteration in policy space procedure), Assume (Al) or

(A2). Choose u° so that V(u®) exists. Assume o is given and v(u™)

. n+l s s e .
exists, Choose u as the minimizing vector u in

(%) min[R(u)V(up) + K(uw] = R(up+l)V(up) + K(un+l)
u

then V(un) \b V = min V(u).

u
Remark. The method in Lemma 2 is mentioned because of its relation to the
simplex method (see below). For many problems, it seems to converge slower
than the various backward iteration methods, e.g.

™ - minfR(W® + K(w)].

u
See [1] for a discussion of a better iterative method,

2,1.1. Introduction of Randomized Controls. For purposes of the IL.P.




formulation and its generalizations, its useful to rewrite (Pl) in an equi-
valent form. We suppose that U, = (al,...,aq) and allow randomized controls.
That is to say that, at each time, the'actual control action which is used is
randomly selected among the Qyseeer03 the probability which governs the

choice (or, equivalently, the control law) depends on the current state.

Thus, the control u is replaced by a sequence 7y of Nq elements,

Y= (YlJ"')YN), Yl is a q +vector

Yi =(Yil,00‘)—riq), i=l,coo’N

q
Xvs=1 7.20, r.o=PuwX)=3]x =i}

j=1 ij ij n
If Ty = 1 then the control at state 1 is pure and u(X)) = @y, when
X =i, Under the control law Y, the transition probabilities take values

n
. . . ¥y - o -
P{X_l =3 | X, =1, law y used} =Pj{X, =j} = Pij(Yi) =
E P;5(@) 75,

We now write V(y) and EI and P] instead of V(u), B, Bj. It turns

out, of course, that the L.P, formulation does give a non-random control.
With this randomization, finiteness of Ui = U 1is equivalent to the sets
8; = (pil(Ui)’""piN(Ui)’k(i’Ui)) being convex polyhedrons.

Let M denote the average number of times thet aj is actually

ij

q
used when state i 1is visited. Write Mi = 2 Mi" and suppose that X
j=1

J 0
r} = M., where p = (ul,...,uN) is a column vector. Write

is random with P(XO

Tivy = 41 = 5 o0 - -
Pu{Xﬁ = j} = g P (Mu; = P(X, = j| control v used,

initial distribution = pj.



2,1.2. The Constraints for L.P. By definition,

0] o«
_ 'e . _ T, .
Mi— ZPr{Xn—l}ur = ZPM{Xn—l}
n,r n=0
S o
=pu. + 2 PxX = 1},
1 n=0p‘ n+l
M,, = LPU{X =1, u(X) =a.}u
ij rn 4 n T
T,n:
S o7,
= LPMx =i, u(X) =a.l.
120 n n 3

From the relation

Y T Y o _
Pu{Xm»l =i} = X pji(ak)Pu{Xn =J, w(x) =ql,

k,J
we obtain
(5) LM o=Mo=p o+ Z.pji(ozk)Mjk, M, 20, 1=1,...,8
k k,J
or, equivalently,
24

Define the transition matrix (again state 0O deleted) R(Y) =
{pjigrj); j,i=1,...,N}. Now Vi = Mjk/Mj’ and an alternate form to
(5) is



i

(M M =y o+ Z[ 1%pt_jl(ock)wraklM

i

T Z.pji(yj)Mj, i=1...,N
J
In vector notation (where M is the column vector (Ml”"’MN)’ and prime !

is transpose)
(8) M=p+R(Y)M, M.=zO0,

We now address ourselves to the uniqueness of the solution of (7),
(8). Unless an obtained solution of (8) is truly the vector of average oc-
cupancy times, the L.,P. formulation may not give the correct solution. The
matrix R(y) is said to be a contraction if its eigenvalues lie strictly
inside the unit cirele., This is equivalent to ([1]) the property Z p( )(u) <1
for all i, which, in turn, is equivalent to R (Y) being a contractlon in
the sense that max] Cil < max] Dil in C =R (T)D. These properties are

i
equivalent to Rn(u) -0 as n - o,

Lemma 2. Suppose R(y) is given. Assume either (i); (Al), or (ii);

ui >0 for all i, Define the cost

(9) z = i,Zj M, k(1,0,) = iZMik(i, 1)
k(i,71;) =2 v 5k(1,04)
5

Then there is a unique non-negative solution (10) to (8),




(10) S M= Z(R(D)P, RV =1,
n=0

and this solution is the vector of mean occupancy times. Furthermore (9)

can be written as (11).

(11) z = b R(VK(Y), =2 pv(r;i)
n=0 i

where V(7v;i) = cost for (Pl) corresponding to randomized control v and

K(v) is the column vector

K(7) = (K(1,77)500 0, KN, 7))

If p, >0 for all i, then any control law (Yl,...,YN), or

equivalently, any {Mij} which minimizes (9) subject to (8), also solves

(P1l), and conversely, In particular min z = 2 uiVi. The converse state-~
i

ment _:_L_§ true even _J_._f" some _c_>_f_ the “i = Q,

Proofi Only the uniqueness of the solution to (8) will be shown, for the

rest follows easily from this. Any solution of (8) is of the form

(12) M= lim (R())™M + T & (v))"
n n=0

Thus, we need only show that R(y) or RN( Y) are contractions in the

appropriate senses,



Assume (i), The eigenvalues of all R(u) are interior to the unit
circle for all pure controls u, and there are only a finite number of pos-
sibilities for wuw. Any R(y) has the form

R(T) = Z xiR(ul), M 20, DA =1,
1

. where ut ranges over all possible pure control vectors with values in
Ul Koo aX UN. But, since R(y) is a non-negative matrix, the eigenvalue

e(R(A)) with largest absolute value is real and positive and

e(R(1)) = £ ae(R(uD)) < 1,
i

thus proving unigueness under (i).

Assume (ii), If wy >0 for all i, and R™(y) does not tend to
the zero matrix, then (12) implies that some Mi is infinite, a contradic-

tion. Q.E.D.

Remark. Lemma 2 can be strengthened under (A2)., First we make
the following observation, Let My >0, i =1,.0.,r with all other ‘ui = d.
Let 8,(y) denote the states 1,...,r, all those states connected to
1,...,r and all transient states. ILet §,(7) denote the remaining states
(a positive recurrent class)., A modification of the proof under (A2) yields
th‘at‘ Epgg)(r) <o for 1ie Sl(*r) and all j. Hence for i ¢ Sl( 1,

n=0
p§§)(y) >0 and the form (12) implies that the component Mi of the solu-



tion to (8) is the mean occupancy time. For 1 € S5, (12) indicates that
the component M, of the solution to (8) can be larger than the mean oc-
cupancy time, This turns out to be unimportant under (A2),

We also note that, if w; >0 for all i, and z <, and
k(i,aj) 2 € >0, then RN(VD nust be a contraction, for otherwise we would

have 2z = o,

Lemma 3. Assume (A2), Let Y be optimal. Then the M, solving (8) are

the mean occupancy times, M; =0 for i 8,(7), and pij(y) =0 for 1ice

5:(7), 3 € 8,5(7). Also pgg)(yj —0 as n - for ie 5,(y). Thus (10)

and (11) hold.

Proof: All states in Sl(r) are transient, and non-transient states (i.e.,
those in S,(7)) cannot be reached from states in Sl(yﬁ, for otherwise the

representation

co

. n n

z = (im MR (VK(Y) + pt ZR(VE(Y),
n 0

and the positivity of k(i,y;), imply that z = +w, Let i ¢ 85(¥). Then

M, is not effected by the values of Mﬁ, Jj e Sl(yﬁ, since pji(yﬁ = 0,

Since k(i,yi) >0 and 7y 1is optimal, the form (9) implies that M, =0.

Thus M'R(Y) »0 as n - o, proving (10) and (11). Q.E.D.
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Remark on the equality constraint (6). If k(i,as) z 0, the equal-

ity constraint (6) (or (8)) can be replaced by

(6") M, - Zz le(oz ) 2y, M0
or
(&) M Z oo+ Z;pal(a )M

We will give the proof for all My >0 and show only that the minimum of
(9) under (6') is not less than the minimum of (9) under (6) - which, in
turn, implies that the optimal solution will give an equality in (6')

First observe that (6') implies that M, z by >0, Let {Nkj}
solve (6'). Define, again, Ty = Mﬁj/Mﬁ’ and let R(y) be the corresponding
transition matrix.(6") can be written as

Mzp+ RY(Y)N,

which implies that (R'(vﬁ)N is a contraction. Thus there is a unique

non-negative solution to

M=p o+ RV,

and



M-M 2 R*(7)(M-N)

which (since (R'(Y)) —0) implies that

Mz M
Then the set {Mij = MiYJ.i} satisfies
M. =M, .,
ij ij

Since k(i,OéJ.) z 0,

z= 2 k(i,aj)ﬁij s % k(i,aj)Mij.
i, i,J

2.1.5. The Dual form for L.P. Write the system (7) in the

vector form

where _# = (Mll’Ml2""’Mlq’MQl""’MNq) is the column vector of I,P.
variables and ¥ and & are the N X Nq matrix and Nq row vector,

(13a) and (13b), resp.

12



-py (@) +L,..0, -pll(ozq) +1,  -pyi{ey)s..., —pgl(aq), ceny =Py (0) e, -le(oaq)

~P1o(0y) s, -plg(ozq) s Poplag)+l, e, —pgg(ocq)+l, eo ey =Byo(Qy), a0, ~pN2(qu)

(13a) .

“P:LN(O‘]_): seey "Pm(aq); e ° e g —pNN(al) 1,000 ’—pNN(aq) +1.

(13b) k(l,al),...,k(l,dq), B(2,0) e e s K(2,00)5 ey K(N,0), oo, K, 0 )

Let C = (Cl,...,CN) be the column vector of dual variables. By

the usual rules, [8, p. 127], the dual form of the L.P. is

(1) maximize X HiCs
i

with constraint

(15) o'C = B,
and the Ci are unconstrained in sign,
Writing out (15) in detail and rearranging some terms gives the
Wg inequalities
N

(16) c; = j}jlpij(ar)cj + k(i,0)

((i,rth) inequality) i = 1,...,N; r = 1,...,q.



1k

It will be shown below that, if all My > 0, then for any optimal
solution, Mﬁj % 0 for at most one J (depending on i), and Mi = “i > 0.
Denote this J by (i) and let uy _denote ar(i)' Let C denote.the
optimal dual vector. By the complementary slackness theorem of I.7P.,

there is equality in (16) for the (i,r(i))th lines, Thus

N
(1) ¢, = min[ )3 Py (a)c + k(i,0)]
o j=1
N
= 2 Py (u )C + k(l,u )
J= =1t

where « vranges over U

L1}

(al,...,aq), which are precisely the dynamic

programming equations (3). Thus, for the optimal dual variable

C, =V, = mf.ln v(uyi).

The L.P. dual requires a meximization (14), but, any vector ¢
which actually satisfies (16) is not a true cost vector (for some control
u), unless it is the optimal cost vector.

If not all p; >0, buk k(i,aj) z e >0, some of the'optimal M

will equai zero (see Lemma 3% and the remark preceeding it)., Let Mi >0

and Mis > 0., Then, by the complementary slackness theorem, for all Qs
N
t =
(17%) c; X 13(0‘3)0 + k(i,a) S %'.lpla(a )c + k(i,0,).

Furthermore, by taking suitable linear combinations in (17') (v = optimal



control law)

N N .
(17") c, = j?lpij(vi)Cj + k(i,7;) = j?lpij(oct)cj + x(1,04)

Since pij(yi) =0 for i e 8(v), J e 8y(7), and Sl(r) are transient,
we conclude that C, = min V(y;1) = V;, and that there is a non-random

optimal control (let Sl(yﬁ =1,...,8, and Mir(i) >0 for i=1,..,.,8

then (ar(l)”"’OE(s)) is an opbimal control, ‘and S,(7) 1is never reached).

2.1.4, The Simplex Method and Iteration in Policy Space,

Theorem 1. Under (Al) 92.(A2)’ there is an optimal non-random control.

I.e., there is an admissible set {Mij} which minimizes 2z, and for which

Mij >0 for EE most one j for each 1i. It ui > 0, the basic solution ab

each iteration of the simplex method satisfies Mij >0 for only one

for each i,

———

Proof: All assertions have already been proved, except the last., There are

at most N of the {Mij} which are non-zero at each iteration.. Then Mi z
wy >0. If M, >0, M, >0 for s # r, then M; = 0 for some j, which
contradicts Mj 2 “j > 0., Thus Mij >0 for one and only one Jj, for each 1,

at each iteration of the simplex method. Q.E.D.

Simplex Multipliers., Assume either (Al) or (A2) and also that,

under (A2), the simplex routine is initiated with a pure control u or a

random control v for which RN(u) or RN(Y) is a contraction, Let



16

A = [al,...,awg be en N X M matrix with N <M and columns a;. Con-
sider the L.P. problem of minimizing c*x = z with constraint Ax =D,
where cf = (Cl"°"CM)° Let xil,ce,,x. be the basic solution at a

given iteration. Then([8]), there are numbers (simplex multipliers)

Wl""’WN g0 that

(18) Ta, -c, =0, n=1...,N

T = (Wif""WN) = row vector.

Define q_j-
N
(19) Ta, ~o¢ = LT

Let q; = max qj. Then the simplex algorithm chooses x; as the new entry
J
into the basis. If all g, =0, the current basis i1s optimal,

Let p, >0 for all i, and let {Mij(i)’ i=1...,N} be the
basis at a given iteration. Let v, = aj(i)’ and Vv = (Vj;..,,VN). For
our L.P, problem, the multiplier results is: there is a vector

(Trl,...,’ITN) =T so that

N

(20) Ty -jélpij(vi) Ty - EE,v) =0, d=1..,N

The new basis entry Mir is chosen as followss choose the 1i,r for which



I7

N
Ty - z,ﬂ’lpij(o‘r)wj - K(Eo) = q;,

is largest. At the optimal (optimal control = u = (ulg...,ur))

N N
(21) T, = 2 p..(ui)Wj + k(i,j) £ X pij(OE)Wj + k(i,0.)

oy M 3=1

for all i and Q-

- By (20) and Lemma 1, T, = V(v;1), the cost corresponding to
initial state 1. Egn, (21) is merely the principle of optimality once
again, The method of selecting the new basis variable is clearly a special
case of iteration in policy space (Lemma (2)), where only one control is
changed at a time, This was first_observed by DeGhellj nek [9] for the
average cost per unit time problem. This observation suggests that the L.P.
algorithm is no betfer than algorithms which are available for the original

dynamic programming problem.

2.1.5. Elaboration of the Dual Form (14), (16).

Assume either (Al) or (A2) in this Section. If either
(i) U= U; = (aly...,aq)
or

(ii) 8, = (pil(Ui)""’piN(Ui)’ k(i,Ui)) is a convex polyhedron

for each i,
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then (P1) has an L.P. form, with dual form  (14), (16). It has already
been noted that (i) and (ii) are equivalent. Instead of finiteness of the
Ui’ suppose temporarily that (AB)gpij(') and k(i,*) are continuous and

U is compact. If, in addition
(iii) 8; is convex,

‘then the generalized programming method (G.P.) of Wolfe [8] can be used

to solve (Pl), and the dual of the G.P. is precisely (14), (16), where
ar ranges over the Ui‘

Under (A3) alone, we can convexify the S; by allowing ran-
domizations, and thus apply G.P. However, it is interesting to see by a
more direct argument, that the solution to (14) - (16) is also the solu-

tion to (PL).

Theorem 2. Assume (A3) and either (Al) or (A2). Then there is a solution

to (P1). The optimal cost vector V solves (1L), (16')

t < N
(16%) C, = ? pij(vi)cj + k(l,vi), v, € Up
¢ =R(v)C +XK(v), v = (Vi?""vN)'

Proof: 1°. The first statement is known to be true [2]. By the principle

of optimality, the optimal control u = (ul,...,uN) and least cost satisfy



V = R{uw)V + K(u) £ R(v)V + K(v), all Ve Uy Vo= (Vo)

Thus V satisfies (16').

2°, If vectors A,B satisfy (16'), then max(A,B) (take the

max component by component) satisfies (16') by the following argument.

b=
A

ijﬂ_](a)Aj + k(i,0)

J
all o,i

jox}
A

?pij(a)Bj + k(i,a)

< 5. .
»max(Ai,Bi) s ?pij(oc) maX(Aj,Bj) + k(1,q).
3°, Next, it is shown that all vectors W satisfying (16') also
satisfy W £ V. This implies that the set of vectors satisfying (16%)
is a lattice with maximal element V, and proves the theorem, ILet U sat-
isfy (16') with U; >V,. Then ¥ = max(U,V) satisfies (16'). Write
W, = Vie,, €0 >0 for i =1,...,r and €, =0 for s >r. Then, using the

fact V = V(u),

Z’pi,j(ui)wj + k(1, ui) = Z.:pij(ui)vj + k(i,ui) + ?pij(ui)ej

J J
r
= + Je. 2 W, = V. .
Vi %pij(ul)j wl V1+€1

and



.20

r :

which implies that X pi§n)(u) = 1 for all n. This contradicts the fact
j=1

that R(u) =0. Thus W = V. Q.E.D.

2.2, Additional constraints. In addition to (7) suppose that we require

satisfaction of the inequality constraints

A

]
(22) .ZreirMir £8, 5=Dl...,4
2

Let the dual variables be Cl? Cy C

i =
e Cp N+l’°"’CN+z’ where the Ci’ 1N

2

corresponds to the e equality in (7) and CN+i corresponds to the jth

inequality in (22). Then, for the dual problem, the C;, 1 N, are un-

2

constrained in sign (see rules in [8], p. 125-7) and the Cair

0 <i = g, are non-negative., The dual equations can be wrilten as

N J
(2%) c. £ Xp, . (a)e, +[ e ¢+ ki,a)]
i g=1 ijY 8" 7] rel is N«+r s
s = l,...,q; i =l,c-o’N,

and we maximize

N 2
(2k) LmuC - X 8, Cyyy = %
1 1
Suppose all CN+i are given. Then (23), (24) is equivalent

to the problem of computing the optimal control for the cost
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k(i,0) = Zoe, C. _ + k(i,a).

In many control applications, the egs Z2 0. See example below, Then the

dual L.P. is, in a sense, equivalent to finding the optimal control for a

cost rate g(i,a) which weighs (positively) the constraint. I.e., suppose

4 =1 and egi = 1. Then, we seek the control which minimizes Z:Mijk(i’oﬁ)

i, ]
. subject to the mean time to absorbtion being no greater than ﬁi, Then
k(i,o) = Cys1 * k(i,a).
Thus, the equivalent cost C = (Cl""’CN) is
u u S
(25) C;, = [B; Cy,, * time to absorbtion + E; ;;f(xn’“(xh))]'

If ®, = 0, the form (24) suggests that we want to find the
i

least weights CN+i’ for which the control which minimizes (25) also satis-

fies the constraints (22). Note that the optimal controls for at most £

states may possibly be randomized, since the basic solutions of the primal

problem may have as many as N+4 of the {Mij} non zero.

2.5, Example. To see how 'state space' constraints of the form (22)
may appear, we consider a simple Markov chain problem which is a disecretization
of a continuous time problem. Consider the system ¥ = u+oé, where Et is

white Gaussian noise and |u|l £ 1. In It® equation form, the system is



where

(Xl't’

22

i

dx ngt

dx

n

udt + odz

Zz, 1is a Wiener process. Suppose that we wish to drive x, =

t t

Et) to the target line T in Figure 1, in minimum average time.

By the method in [1], an approximating Markov chain {Xh} (whose state

space

is the collection of Nodes in Fig, 1) can be obtained. Let h

denote the distance between nodes in Fig. 1, with h < 62, and let e,

denote the unit wvector in the ith coordinate direction. Then for x

on a node not on T, the transition probabilities of the Markov chain are

px,x+elh(u) = hlxgi/(02+hlx2]) if x,20
= 0
if %, < 0
‘ u) =0 if x, Z
px,x—elh( ) 1 > 0
= B x| /(% 4] x|) if x, <0
P%,x+e2h(u) = (02+hu)/2(02+h!x21)
px,x-egh(u) = (o"-nw)/2(c"41) x| )

K(x,u) = K(x) = B2/(c"+b] x| )

In order to solve the minimum average time to (the nodes on) T

problem for {Xh}, it is necessary to truncate the space, To do this we



fix an external boundary B as in Fig. 2, and assign transition probabili-
ties on B to be consistent with the internal dynamics in some way. Several
procedures are possible, and, for our purposes, the exact procedure is un-
important. Suppose only that, on the indicated segments of B, the process
can move in the directions of the arrows with given probabilities. Of
course, specification of an outerboundary may be part of the original prob-
lem statement.

Let us next consider some state space constraints. A reasonable.
constraint (considering that the model may not be adequate for large | x|

any way) is

a
(i): Average time on boundary = 2. LM, =8,
. |
- i€B j=1

(i) denotes the average time on the boundary for the {x;} process. If

we wish an approximation to the original continuous time problem, with the

~weitional constraint that the average time the original process is on the

boundary B, we need to take into account the fact that a unit time for the

{Xh} process is not a unit time for the x

y Process. The details must

be omitted due to space 1imitafions, and the reader is referred to {113].

It will suffice to say that the weighted average

q
ciy. <
(ii): .Z a; 'Z Mij £9
ieB J=1
\ ey ) 2 "'l
is required in lieu of (i) where e, = (o” + hlx,|), where x, is the

second component of the vector x at node 1.
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In general, there may be a region Q which it is undesirable to

enter, and we can introduce

q

(iii): X a, 2 M, .
. i, ij
ieQ 7 j=1

IA
o

For another type of example, suppose that fuel has an associated

cost. Note that the pij(u) are linear in the control u. ILet B, =

P{u(Xn) =+ 1] X = i}. If 6i = %, then the average (or actual) control
at state 1 1is zero . Indeed, we can suppose that the actual applied
control is 2Bi -1 since this gives the same transition probabilities

as the random control. In general, the average cost of fuel at state 1

is l2si—ll. Define M;, M; as the Mﬁj’ where J corresponds to u = +1

and u = -1, resp. Then, the average fuel used 1s

(iv): F = ‘i': IM; - M lag

and, we can optimize with constraint F £ 8, The constraint (iv) can be
put into a linear form by the introduction of suitable auxiliary variables as
follows?  Minimize 2 (M; +»M£)ai with the constraints (6) and V- - W& =

. 1 .
M, - M, and V 20, W 20, and

(V" +W)a; =8
i

(see [T], Sec. 5.3 for a similar substitution,)
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Example Continued: Numerical Result, Let h = .55, 62 = 2, Then

for the region of Fig. 2, we will have N = 195 states, including the 3 tar-
get states. The k(x) on the outer boundary nodes are 1,5 of what their
values would be were the node not on a boundary, and we let the pij(g) be
independent of wu, for i on the upper and lower boundary. u, (Eqn. (6))
equals one for the || marked state in Fig., 2. Note that the immediate
effects of the control u are on the vertical movement only. The control
‘Qalues (f 1) for the minimum average time problem are given in Fig. 3.
Denote T¥ = minimum average time = minimum average fuel. Figs. 4 and 5,
plot the control values for & = .9T* and .75T*, resp., and indicate the
expected decrease of control effort on the counter clockwise side of the
switching curve as 8 decreases,

Note that the control value - u = 0 is singular (see also the
end subsection of the paper) in that either the right side of (23) is mini-
mized (for this example) at o = t 1, or else it does not vary as o varies
in [-1, +1]s i.e., if the optimal control for state 1 1is zero, it can
never be determined by minimizing the right side of (23), as it could if there
were no side constraints. The example also emphasizes the relationship be-

tween singularity and randomness of a control.

%3, The 1L, P, Form of the Finite Time Problemo.

Consider the dynamic programming problem (P3): minimize, for

each i =1,...,N,
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n
By 2 k(3 u(x,)

. o 1 n-1, . i L
where T = (u,u,...,u ) is a sequence of control vectors, w being

used at time n-i. (P3) is equivalent to the following L.P. problem, ILet

yij(m) = P{Xm =1, u(X) = aj}. Minimize

q N
-7(26) 7 = ‘/5 2, yij(m)k(i,ozj)

n
2
m=0 j=1 i=1

with constraints (the Chapman-Kolmogorov equation)

y;(0) = ;/3 'yij(O) =, 1= l..,N, yij(m) =

(21)
yi(m+l) = };yij(m+l) = Zk ykz(m)Pki(aﬂ)’ m=0,1,..0.,0-1;

J Z,
where all yu >0 and 2 g = 1. We will write the L.P. eqns. for the more
general problem (P4): minimize (26) with constraint (27), for any b, 20

and the inequality constraints

(28) izg aij(m)yij(m) $£8, m=0,.5.,0
s

(28) includes only one constraint for each time m, but the general case is
just as simple.

Define the row vectors with q components
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T=(1...,1)
PiJ = (Pij(al))""}pij(aq))
k(i) = (k(iyal):"':k(iyaq))

ai(m) = (ail(m), 00y a‘iq(m))
and the column vectors (with q and Ngq components, resp.)

yl(m) = (yll(m)’ ¢ °inq(m))

y(m) = (yy(m), ...,y (m)).

Then the simplex tablean can be written in the fornx’bf Fig, 5”pﬂ

Let the column vector C(m) = (Cl(m),...,CN(m)) be the dual
vector to the m#h group of equations in Figure 3. The dual of (P4) is:

maximize
n

(29) e (O -G8, C, 20
0

with the constraints

Ci(n) £ Cnaiz(n), £=1...,0

(30) "
Ci(m—l) ES j=lpij(a£)cj(m) + k(i,ap) + am-laiz(m—l)

all i,m, 4.
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In the absense of the inequality constraints (28), the system (30) is simply
the dynamic programming eguation. (30) can be put into a more convenient

vector form as follows. Let w = (ai 3,,.,oi>) be an arbitrary control.
1

N

Define the column vectors

K(w) = (k(l,aﬁ ),.eo,k(N,oﬁ ))
1 N

a(wym) = (alil(m)"'°’aNiN(m))'

Then (31) is equivalent to (30).

(31) )
C(m-1) = R(W)C(m) + K(w) + C__ja(w;n-1)

WA

for all control vectors w.

k, A Maximum Principle for Markov Chains.

The linear programming formulation treats the control and state

simultaneously, in that the Mij or yij are the free variables, Next,

by a direct application of the deterministic discrete time maximum principle,

a form of stochastic maximum principle for the fixed finite time Markov

ottt — L

problem will be derived, in which the control and state are treated analog-

ously to thelr treatment in the deterministic problem,

Define pgn) =H Xh = i}. The probabilities pgn) will be the
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dynamical variables. Again U = (al,.,.,aq), and ‘% suppose that the con-

trol variables are the probabilities

szj = Plu(X ) = o lx, =i}

Indeed, whether or not the solution is a pure control, it is (once more)

only by allowing randomization that the discrete maximum principle will be

applicable, Define the vectors 62 = (Bil,...,ﬁiq) and p- = (B?;---,ﬁﬁ)-
B takes the place of the u = (ul,...,uN) of the dynamic programming
problem (and the ¥ of the L.P, problem). Let R(B") = {pij(ﬁ?);

i,j = 1,...,N} denote the matrix of transition probabilities (with state

0 deleted) under the random rule ‘6m; i.e.,
m m
Define the (N) column vector K(ﬁm) = (k(1 6m) k(N Bm)) where
3P /s 2PN
k(i,B87) = X k(i,a,)pt .
71 7 2TRTAg

The problem to be treated is (P5), a slight extension of (Pk).

The dynamics are

(32) P(ml) = R'(Bm)p(m) = [R'(Bm)p(m)-P(m)] + p(m)

= 2o, + 2™, n=-0,1,...,n-1.
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The cost is

n
(53) 2= 3 % x(i,0)8Mel = Zxr(e™p™,
© m=0 i,j J J m
with constraints

O o~ ~

GOP( ) - 50, an(n) - 6n

(34
le(l) =8, 1=0,...y0,

~

where G Gn and the Qi are matricesg of full rank, and 13) %n and 61

o’ o’
are suitable vectors. Define pém) by ;éo) =0 and
m+1 m m) . m m
p(() ) - pé ) fo(p( ),5 ) = pc()m)+K'(B )p(m)

Then pém) = Z.

Observe that the set

£(p™, 6%

T :p( m) ,68%)

is convex in the control vector Bm. It is easy to see that the conditions
of the discrete maximum principle hold for the set (33) - (34) (see
[7, Chapter M],and note that we change some signs here in order to bring

the result in closer conformity with dynamic programming usage). p direct

transcription of this discrete maximum principle yields
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Theorem 3., Let éo,,.,,én’l and ﬁ(o),,..,ﬁ(n) be the optimal control and

state, resp. Then there are costate vectors m(0),...,T(n), and vectors

v

My

(o]

0 (all components §§§non—negativé) , and vectors ib, i;

and a scalar

T 2 0. (Not all the 7°, 7(0),...,7(n), ib, i£ are zero,) The (i)

satisfy the adjoint equation

(35a) 7(w) = m(m+l) + [R(ém)—l]w(m+l) + WOK(gm) + Q&km

m=0,...,0-1
and the transversality conditions
(35b) 7(0) = séib, m(n) = @R+ QU
and
(35¢) x;l(o,.,m’fa(m) -8) =0, m=0,...,n.

Define the Hamiltonian

B(e™ 6, m,1%m) = 0% (™M™ + mre(x(™, 6",

Then

(36) BB r(me1),70,m) = H(EE", w(me1), 7°,m)



i .
for all B~, or eguivalently,

(37) 3 Ty rREM T + 7OR(E)]

4.

= 3 RET(me1) + TOR(E™) 1.

In terms of components (37) is

A

Gre) B0 Ly Byt » s, EDT 2 BV 1Ty () i, B

Remarg. It can be shown that WO > 0; thus we can set Wo = 1, Iet GO = 1.

Then %6 = |, a vector of given initial probabilities, Suppose that the

other constraints of (34) are sbsent. Then, m(i) is the optimal dynamic
programming cost vector, with n-i steps to go, and (35a) and (37) com-~

bine into

m(m) = R(gm)v(m+l) + K(ﬁm) <

R(BMm(m+1) + K(B™), w(n) =0, m =0,1,...,n-1,

which is precisely the dynamic programming equation (3).

Remark on Singular Controls. The set {pij(Bi), 1= 1,...,N, k(3,87))
is a convex polyhedron, as Bl varies over its admissible values. Thus,

the minimum of the r.h.s. of (37) lies on a vertex of the polyhedron - or,

if the minimum falls on more than one vertiex, 1t also falls

in the convex hull of the set of vertices on which the minimum occurs. Con-
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sider the example (a typical discrete problem derived from a continuous time
problem which is linear in the control). In that case there are at most
two extreme points to the polyhedron and pij(Bm) has the form B?Pij(+l) +
(1-5?)1313(-1), and k(i,a?) = k(i) and we can write the r.h.s. of (37a)
as

N

5702y (0 )+ 5(0)]

_ ol o _ ol + -
= B; di(m+l) Bidi(m+l) + eij(m+l) ,d;20,4d; 20,
and the minimizing B? satisfies

B, =1 if d;(m+l) z d;(m+l)
=0 if d;(m—i-l) > a3 (me1)

= ¢ otherwise.

However, we have seen in past sections that, in the presense of
'state variable! constraints (3L4) (except Gop(o) = Eb), the control may be
random for some times m and states i. Thus, with these state variable
constraints, the control may well be singular; i.e., d;(m+l) = d;(m+l),
and the maximum principle yields no information directly, in analogy to the
state variable constrained deterministic case. Existing works (e.g. [10],
on continuous time stochastic maximum principles - dealing with ter-

minal time 'average'! constraints g(EXT) = 0 have not adequately accounted

for the possibility of randomization. It would also be worthwhile to study
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nethods for extracting information from the stochastic Hamiltonian formula-
tion in the singular situation. One of the advantages of our study of

the simple Markov chain problem, is that the singular - and randomization -
problems are made qgite apparent, a situation not easily seen from the con-

tinuous time formulations.
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